Quadrature in Besov spaces on the Euclidean sphere

نویسندگان

  • Kerstin Hesse
  • H. N. Mhaskar
  • Ian H. Sloan
چکیده

Let q ≥ 1 be an integer, S denote the unit sphere embedded in the Euclidean space Rq+1, and μq be its Lebesgue surface measure. We establish upper and lower bounds for sup f∈B p,ρ ∣∣∣∣ ∫ Sq fdμq − M ∑ k=1 wkf(xk) ∣∣∣∣ , xk ∈ S , wk ∈ R, k = 1, · · · ,M, where B p,ρ is the unit ball of a suitable Besov space on the sphere. The upper bounds are obtained for choices of xk and wk that admit exact quadrature for spherical polynomials of a given degree, and satisfy a certain continuity condition; the lower bounds are obtained for the infimum of the above quantity over all choices of xk and wk. Since the upper and lower bounds agree with respect to order, the complexity of quadrature in Besov spaces on the sphere is thereby established. ∗The support of the Australian Research Council is gratefully acknowledged. Part of the work was carried out while the author was a guest of the Center for Constructive Approximation at Vanderbilt University. †The research of this author was supported, in part, by grant W911NF-04-1-0339 from the U.S. Army Research Office, grant DMS-0204704, and its continuation grant DMS-0605209 from the National Science Foundation. ‡The support of the Australian Research Council is gratefully acknowledged.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterizations of Function Spaces on the Sphere Using Frames

In this paper we introduce a polynomial frame on the unit sphere Sd−1 of Rd, for which every distribution has a wavelet-type decomposition. More importantly, we prove that many function spaces on the sphere Sd−1, such as Lp, Hp and Besov spaces, can be characterized in terms of the coefficients in the wavelet decompositions, as in the usual Euclidean case Rd. We also study a related nonlinear m...

متن کامل

Orbit Spaces Arising from Isometric Actions on Hyperbolic Spaces

Let be a differentiable action of a Lie group on a differentiable manifold and consider the orbit space with the quotient topology.  Dimension of is called the cohomogeneity of the action of  on . If is a differentiable manifold  of  cohomogeneity one under the action of  a compact and connected Lie group, then the orbit space is homeomorphic to one of the spaces , , or . In this paper we suppo...

متن کامل

Decomposition of Besov and Triebel – Lizorkin spaces on the sphere ✩

A discrete system of almost exponentially localized elements (needlets) on the n-dimensional unit sphere Sn is constructed. It shown that the needlet system can be used for decomposition of Besov and Triebel–Lizorkin spaces on the sphere. As an application of Besov spaces on Sn, a Jackson estimate for nonlinear m-term approximation from the needlet system is obtained. © 2006 Elsevier Inc. All r...

متن کامل

Harmonic Besov Spaces on the Unit Ball in R

We define and characterize the harmonic Besov space Bp, 1 ≤ p ≤ ∞, on the unit ball B in Rn. We prove that the Besov spaces Bp, 1 ≤ p ≤ ∞, are natural quotient spaces of certain Lp spaces. The dual of Bp, 1 ≤ p < ∞, can be identified with Bq , 1/p + 1/q = 1, and the dual of the little harmonic Bloch space B0 is B1.

متن کامل

Polynomial Frames: A Fast Tour

We present a unifying theme in an abstract setting for some of the recent work on polynomial frames on the circle, the unit interval, the real line, and the Euclidean sphere. In particular, we describe a construction of a tight frame in the abstract setting, so that certain Besov approximation spaces can be characterized using the absolute values of the frame coefficients. We discuss the locali...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Complexity

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2007